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Figure 1: BiGR generates high-quality images while improving the discriminative capabili-
ties of the representations. Left: Generated 512×512 samples, 256×256 samples, and class-
conditional editing samples. Right: BiGR vs. LlamaGen (Sun et al., 2024). We visualize image
features from 100 classes in ImageNet-1K validation split using t-SNE (van der Maaten & Hinton,
2008), where the same color indicates the same class. Our model produces features with greater
discriminative separability and enhances both generative and discriminative performance.

ABSTRACT

We introduce BiGR, a novel conditional image generation model using compact
binary latent codes for generative training, focusing on enhancing both generation
and representation capabilities. BiGR is the first conditional generative model that
unifies generation and discrimination within the same framework. BiGR features
a binary tokenizer, a masked modeling mechanism, and a binary transcoder for
binary code prediction. Additionally, we introduce a novel entropy-ordered sam-
pling method to enable efficient image generation. Extensive experiments vali-
date BiGR’s superior performance in generation quality, as measured by FID-50k,
and representation capabilities, as evidenced by linear-probe accuracy. Moreover,
BiGR showcases zero-shot generalization across various vision tasks, enabling
applications such as image inpainting, outpainting, editing, interpolation, and en-
richment, without the need for structural modifications. Our findings suggest that
BiGR unifies generative and discriminative tasks effectively, paving the way for
further advancements in the field.
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1 INTRODUCTION

Image generation is experiencing a revolutionary growth driven by the advancements in diffusion
models (Ho et al., 2020; Rombach et al., 2022; Peebles & Xie, 2023) and autoregressive mod-
els (Esser et al., 2021; Sun et al., 2024; Tian et al., 2024). While these models have demonstrated im-
pressive performance, their representation capabilities are under-studied. As revealed by Balestriero
& LeCun (2024), reconstruction-based learning often produces visually compelling results but fails
to provide strong latent representations for perception. It has been a long-desired goal of the research
community to design a good image generator which can also serve as a strong feature extractor.

Centered around this goal, previous studies (Chen et al., 2020a; Li et al., 2023a) on representation
capabilities of generative models have primarily focused on unconditional generation. Despite con-
ditional generation (Peebles & Xie, 2023; Sun et al., 2024; Li et al., 2024) has emerged as a recent
research trend and garnered much attention, investigations of the representation capabilities of con-
ditional generative models remain limited. In conditional image generation, conditions are added to
guide the generation process. However, this guidance is absent in downstream discriminative tasks.
This weakens the relationship between features and categories, and thereby diminishes the repre-
sentation capabilities of the features. We validate this limitation using the latest class-conditional
image generation model (Sun et al., 2024) (see Fig. 1 (right)), and stress the necessity of improving
the representation capabilities of conditional generative models.

We introduce BiGR, a novel conditional image generation model that utilizes compact Binary latent
codes for Generative tasks with improved Representation capabilities. BiGR is trained exclusively
through a generative process by reconstructing tokens without relying on any discriminative losses.
We compress an image into a sequence of binary codes using lookup-free quantization (Yu et al.,
2024; Wang et al., 2023) and utilize our model to predict these binary codes. We emphasize that
BiGR is the first conditional image generation model that unifies generative and discriminative tasks,
achieving improved performance across both. Below, we describe our model design, generative and
discriminative use, and zero-shot generalized applications.

Our framework, built upon the language model architecture, has three major components, namely
(1) a binary tokenizer that converts a pixel-level image into a sequence of binary latent codes, (2) a
decoder-only transformer equipped with full bidirectional attention, and (3) a binary transcoder that
transforms continuous features into Bernoulli-distributed binary codes. We train BiGR using the
masked modeling approach (Bao et al., 2022; Chang et al., 2022; Li et al., 2023a). This modification,
deviating from the typical autoregressive approach, expands token interaction without altering the
structure of Llama. Paired with a tailored inference process and inherent visual representations,
BiGR can perform both generative and discriminative tasks.

For generative purpose, we design a sampling method that iteratively unmask tokens in a sequence,
with the order determined by the binary entropy magnitude from the predicted Bernoulli distribu-
tion probabilities. This approach requires only a small number of sampling iterations which signifi-
cantly accelerates the inference process. As a result, we achieve high efficiency in image generation
compared with diffusion models, which require multiple steps to remove noise, and autoregressive
models, which predict each token sequentially. Through extensive experiments, we show that BiGR
performs on par with, or even surpasses, existing baselines in quantitative metrics.

For discriminative purpose, we perform average pooling on the intermediate features in BiGR. By
this straightforward operation, BiGR exhibits significantly stronger representation capabilities than
comparable models, which has been empirically validated through linear probe evaluation. Due
to the compactness of binary codes and the global information from masked modeling, the feature
representations produced by BiGR can more effectively linearly separate visual categories in down-
stream discriminative tasks.

Moreover, we explore the zero-shot generalization capabilities of BiGR within the generation do-
main. Unlike autoregressive models that must predict tokens in raster order, the masked modeling
mechanism offers a huge flexibility during inference, allowing for the design of task-specific strate-
gies. As a result, BiGR can perform various vision tasks in a zero-shot manner, without requiring any
structural changes or parameter fine-tuning. In this paper, we showcase applications of our model
in image inpainting, outpainting, editing, interpolation, and enrichment. We believe that further
applications of BiGR can be unlocked through community efforts.
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To summarize, our BiGR possesses the following prominent advantages: (i) Uniformity - BiGR is
the first conditional image generation model that unifies generative and discriminative tasks within
the same model. By modeling compact binary latent codes, BiGR delivers strong performance in
both tasks compared to existing models. (ii) Efficiency - BiGR generates images at a low time cost,
attributed to the small number of sampling steps required in the iterative unmasking process, while
still maintaining high generation quality. (iii) Flexibility - BiGR can be flexibly employed for var-
ious vision applications, such as inpainting, outpainting, editing, interpolation, and enrichment in
a zero-shot manner, without the need for task-specific structural changes or parameter fine-tuning.
(iv) Scalability - BiGR demonstrates scalability in both generative and discriminative tasks, as evi-
denced by comprehensive evaluations of both generation quality and linear-probe performance.

2 RELATED WORK

Binary latent code modeling Binary latent code, also known as hashing (Wang et al., 2017), has
been largely demonstrated effective for visual representations due to its compactness and discrete-
ness (Cakir et al., 2019; Jiang & Li, 2018; Shen et al., 2015; Wei et al., 2021; Wu et al., 2019). In
the realm of visual generation, the study of binary tokenizers has recently attracted notable atten-
tion, referred as look-up free quantization in Yu et al. (2024) and as binary autoencoder in Wang
et al. (2023). Binary tokenizers can enhance the codebook utilization for vector-quantization meth-
ods (Esser et al., 2021; Van Den Oord et al., 2017), facilitating image and video generation. Wang
et al. (2023) introduces a Bernoulli diffusion process that operates on Bernoulli-distributed vari-
ables to generate binary latents. Our work studies this type of tokenizers and we propose a novel
generative framework for uniform conditional generation and visual representation.

Generative representation learning Representation learning has long been an important topic,
with self-supervised methods (He et al., 2020; Chen et al., 2020b; Caron et al., 2020; Grill et al.,
2020; Caron et al., 2021; Zhou et al., 2022) dominating the field in the past few years. Some works
learn visual representations through generative modeling. For example, iGPT (Chen et al., 2020a)
predicts pixels in a manner similar to GPTs (Brown et al., 2020), while MAE (He et al., 2022)
and MAGE (Li et al., 2023a) reconstruct masked image regions. ViT-VQGAN (Yu et al., 2022a)
studies the representation capabilities of unsupervised generative models. However, these methods
involve specialized designs for discriminative tasks and are not directly suited for conditional image
generation. Our work broadens this scope by proposing a conditional image generation framework
that consistently delivers both high-quality generation and strong representation capabilities.

Conditional image generation Conditional image generation has gained significant attention re-
cently. Existing works on this topic can be broadly grouped into two categories: diffusion mod-
els (Ho et al., 2020; Song et al., 2021; Rombach et al., 2022; Peebles & Xie, 2023; Chen et al.,
2024a), which gradually denoise a random Gaussian noise, and autoregressive models (Esser et al.,
2021; Yu et al., 2022b;a; Sun et al., 2024; Tian et al., 2024), which predict the next tokens similarly
to language models. The models based on masked prediction (Chang et al., 2022; Li et al., 2023a;
Chang et al., 2023) can be classified as autoregressive models, as discussed in (Li et al., 2024). In
this paper, for clarity, we use “autoregressive” to specifically refer to models that use causal attention
and next-token prediction, and “mask” to refer to models using masked modeling. Although condi-
tional generative models can produce visually compelling images, their representation capabilities
have rarely been studied. Our work aims to bridge this gap.

3 METHOD

Our framework is based on a masked language model that operates directly on binary latent codes
derived from images. We train the model by masking a portion of the input tokens and learning to
unmask them using predicted output tokens. The prediction is achieved through a Bernoulli diffusion
process (Wang et al., 2023), which is well-suited for generating binary latent codes. In sampling, we
determine the order of tokens to be unmasked based on the magnitude of entropy computed from the
predicted Bernoulli distribution probabilities. To obtain latent representations, we perform average
pooling on the intermediate features of our model. We present the overview of BiGR in Fig. 2. We
describe the details of each of its components below.
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Figure 2: Overview of BiGR. For simplicity, we display only 1 bit for each token, although each
token actually consists of K bits in length. Left: We outline the training of BiGR. Starting with
binary codes from binary tokenizers, we append a condition token and mask partial tokens. These
tokens are projected into continuous embeddings and processed by the Llama backbone. The outputs
undergo a Bernoulli denoising process in the binary transcoder to generate probabilities, penalized
by the weighted binary cross-entropy loss (wBCE) at masked positions. Right: We illustrate the
generation process (detailed in Sec. 3.3) and the representation acquisition via average pooling.

3.1 PRELIMINARY

We first review the binary tokenizer and the Bernoulli diffusion process that underpin our model.

Binary tokenizer An image tokenizer T can encode an image x ∈ R3×H×W into a sequence of
latent codes {ζ1, ζ2, · · · , ζn} = T (x), where each ζi represents the code at a specific spatial posi-
tion. Binary tokenizers (Yu et al., 2024; Wang et al., 2023), also known as lookup-free quantization,
transform the code into binary format by

zi = sign(ζi) = 1{ζi > 0}, (1)

and a corresponding token index ri can be computed by

ri =

K∑
k=1

2k−1 · zi[k], (2)

where zi[k] denotes the k-th bit of the binary code zi, and K is the number of binary bits (i.e.,
code dimension), resulting in a total of 2K token indices. Using Eq. (2), (Yu et al., 2024) index
image tokens with the binary code zi and build a vocabulary of size 2K for generative purposes. In
contrast, our approach focuses on directly modeling the sequence of binary codes {zi}ni=1.

Bernoulli diffusion We generate binary codes through a Bernoulli diffusion process (Wang et al.,
2023), which effectively models Bernoulli-distributed variables. Specifically, Bernoulli diffusion
process adds Bernoulli noise from the starting point z ∼ q(z0):

q(zt|zt−1) = B
(
zt; zt−1(1− βt) + 0.5βt

)
t = 1, 2, · · · , T. (3)

Here, B denotes a Bernoulli distribution, and the timestep t out of the total T is denoted as a su-
perscript. We model the denoising process by p(zt−1|zt), which predicts the Bernoulli distribution
probabilities for the binary code at the previous timestep. By iterating the denoising process, starting
with a coin toss B(0.5), we can finally generate binary codes that follow Bernoulli distributions.

3.2 MASKED MODELING ON BINARY LATENT CODES

Backbone We build our method upon the transformer-based language model Llama (Dubey et al.,
2024; Touvron et al., 2023b;a). Unlike language, an image is not naturally modeled as a causal
sequence of tokens, but instead, each token should have access to all others to better capture global
visual information. Therefore, we replace the causal attention commonly used in language models
with bidirectional attention, and let the model predict masked tokens instead of next tokens.
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Input projection In the input space, instead of looking up an embedding vector with a token
index, we use a simple linear layer that projects the binary code onto the embedding space. This
technique has recently been explored for continuous-valued tokenizers in Tschannen et al. (2023),
and we find that it also works well for binary-valued tokenizers. We maintain standard conditional
embeddings and mask embeddings, where the conditional embedding is appended at the start of the
sequence, and the mask embedding replaces inputs at masked positions.

Mask-token prediction During training, we simply mask a portion of image tokens with a learn-
able mask token [M]. The fraction of masked tokens follows a cosine schedule, as used in Li et al.
(2023a). We compute losses only for the masked positions, where the model predicts the values
of the masked tokens. Formally, let fθ represent the language model, and {zimi

}ni=1 denote the se-
quence of binary codes that are partially masked. Here, M = {mi}ni=1 indicates whether the i-th
position is masked (mi = 1) or left unmasked (mi = 0). We obtain outputs at the masked positions
from the language model {hi}mi=1 = fθ({zimi

}ni=1), which are distributed in a continuous space.

Binary transcoder We transform the model outputs h into binary codes1 z through a Bernoulli
diffusion process (Wang et al., 2023). In particular, we learn a denoising network gϕ with a Sigmoid
function S to model

pϕ(z
t−1|zt) = B

(
zt−1;S(gϕ(z

t, t, h))
)
, (4)

which predicts the probabilities of the Bernoulli distribution conditioned on the intermediate feature
h. Consequently, binary codes can be generated by sampling from these probabilities. Follow-
ing Wang et al. (2023); Ho et al. (2020), the training target is the binary residual, i.e., zt ⊕ z0 where
⊕ represents the element-wise XOR operation. The training objective is simply an element-wise
weighted binary cross-entropy (wBCE) loss, expressed as

yk = (zt ⊕ z0)[k] ∈ {0, 1} pk = S(gϕ(z
t, t, h))[k] ∈ [0, 1], (5)

L = − 1

K

K∑
k=1

wk (yk log pk + (1− yk) log(1− pk)) , (6)

where wk = (1− yk) ·
K∑

k=1

yk/K + yk · (1−
K∑

k=1

yk/K) + 1/K. (7)

Here, yk represents the target, and pk is the predicted probability for the k-th bit in the binary code.
The element-wise loss weight wk is applied to mitigate the imbalance between 0s and 1s, calculated
based on their respective ratios in a K-dimensional code. The constant term 1/K is added to prevent
nearly-zero weights that could impede training. In training, we jointly optimize the language model
fθ and the denoising network gϕ using the loss defined in Eq. (6).

Visual representation Once trained, our model inherently possesses strong visual representations.
Given an image, we input it into the model without any masks, along with an unconditional token
appended. We then perform average pooling on the continuous-valued features h to derive the global
representation of the given image. We observe that the most discriminative representation originates
not from the final layer but from the middle layers within the transformer blocks, in line with the
findings in Yu et al. (2022a); Chen et al. (2020a). As a result, we use the intermediate features as the
final image representation.

3.3 ENTROPY-ORDERED GENERATIVE SAMPLING

For image generation, we design a sampling strategy for our model, enabling it to iteratively predict
tokens from a fully masked sequence. Unlike in training, where mask positions are randomly chosen
at each step, during sampling, the order in which tokens are unmasked follows a predefined criterion.

We arrange the masked tokens according to the binary entropy magnitude calculated from the pre-
dicted probabilities. The binary entropy is defined as:

H = − 1

K

K∑
k=1

pk log2 pk + (1− pk) log2(1− pk), (8)

1Since the operation is position-wise, we omit the superscript of positions for simplicity.
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which ranges from 0 to 1. Here, a low value indicates high prediction confidence (i.e., when pk is
closer to either 1 or 0). Therefore, a confidence score can be derived from 1 − H, illustrating the
model’s confidence in this prediction. Following Li et al. (2023a), we add a noise sampled from a
random Gumbel distribution multiplied by the temperature τ to the confidence score.

At each sampling iteration, we select and unmask a proportion of masked positions with the highest
confidence scores. To unmask each token, we obtain its binary codes by performing Bernoulli sam-
pling from the distribution B(pk). The unmasking ratio follows a cosine schedule as used in Chang
et al. (2022); Li et al. (2023a). This process operates over N sampling iterations. When the mask
ratio drops to zero, the sampling progresses to the last iteration where all tokens are unmasked,
marking the completion of the generation process.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Model configuration We use the binary autoencoder (B-AE) introduced by Wang et al. (2023) as
our binary tokenizer. The downsampling rate of the autoencoder is 16, projecting a 256×256 image
into a 16×16 token sequence. We train four variants of the binary autoencoders designed with four
different binary code dimensions, namely 16, 20, 24, and 32. With the four binary tokenizers, we
train our BiGR of three different sizes based on Llama (Touvron et al., 2023a), namely L (316M),
XL (743M), and XXL (1.38B). For the binary transcoder, we follow Li et al. (2024) to employ an
MLP gϕ with an adaptive LayerNorm, with sizes of 20M, 56M, and 104M respectively. For clarity,
we denote the S-sized variant with a B-dim tokenizer as BiGR-S-dB, e.g., BiGR-L-d16.

Training details We train all models for 400 epochs, with L-sized models using a batch size of
1024 and the others using a batch size of 512. Our L/XL-sized models are trained on 8 A800 GPUs,
while XXL-sized models are trained on 32 A800 GPUs. We maintain consistent training settings
across all compared models based on the model size.

Sampling Our model inherently supports classifier-free guidance (CFG) (Ho & Salimans, 2022)
through the Bernoulli diffusion process. Within our sampling process, four hyperparameters are
involved: CFG scale, Gumbel temperature (τ ), the number of sampling iterations (N ), and the
number of Bernoulli denoising steps (T ). We identify the optimal hyperparameter setting for all
models. We set CFG to 2.5 for all quantitative evaluations, which has shown to be effective across
all our models. We set T to 100 as default for all models. See more details in Appendix A.

4.2 UNIFORM PERFORMANCE

Evaluation We evaluate the uniformity of BiGR by concurrently comparing generative and dis-
criminative performance. We evaluate generation quality on ImageNet-1K 256×256 by reporting
Frechet Inception Distance (FID) as the main metric, along with Inception Score (IS), sFID, Preci-
sion (Pre.), and Recall (Rec.) as auxiliary metrics. All metrics are obtained using 50K generated
samples. We assess representation capabilities through linear-probe evaluation, reporting the top-1
and top-5 accuracies, abbreviated as ACC1 and ACC5, on ImageNet-1k 256×256 validation split.
We follow standard practice (He et al., 2022) by using a parameter-free BatchNorm (Ioffe, 2015)
layer and a linear classifier layer to classify the model features. We use the intermediate features
from the 10-th layer for L-sized models, the 15-th layer for XL-sized models, and the 32-nd layer for
XXL-sized models, as experiments on d16 models demonstrate these configurations yield the best
performance. Additionally, we compare the inference speed, specifically the time taken to generate
each image using one A100 GPU with a batch size of 256.

Comparison Starting from the latest autoregressive generation baseline LlamaGen (Sun et al.,
2024), we comprehensively analyze two major components in this paper, namely (1) training ob-
jectives, specifically categorical loss (cat.) and binary loss (bin.), and (2) modeling types, including
masking and autoregressive (AR) approaches. In total, we compare five models in Tab. 1, training
four models—S0, S1, S2, and S3—with different configurations, excluding LlamaGen. For Lla-
maGen, we use the generative performance metrics reported in their paper and conduct our own
evaluation of linear-probe performance using their pretrained model. The inference time of all mod-
els is tested on the same machines by us.
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Table 1: Uniformity comparison. We compare the generative and discriminative performance of
our model against LlamaGen (Sun et al., 2024) and three other settings, varying by tokenizers,
training objectives, and modeling types.

Generative Discriminative

Model Tokenizer Objective Type Time↓ FID↓ IS↑ sFID↓ Pre.↑ Rec.↑ ACC1 ACC5

LlamaGen VQGAN Cat. AR 1.10 3.81 248.28 8.49 0.83 0.52 40.5 64.4

S0 B-AE Cat. AR 1.09 3.21 239.17 5.38 0.83 0.54 23.8 44.2
S1 B-AE Cat. Mask 0.10 3.85 261.81 6.10 0.85 0.47 61.1 83.2

S2 B-AE Bin. AR 1.04 7.50 164.31 6.56 0.85 0.41 45.2 69.3
S3 (Ours) B-AE Bin. Mask 0.69 3.17 262.14 5.59 0.86 0.50 64.3 85.4

Table 2: Binary transcoder comparison.
Generative Discriminative

Binary objective FID↓ IS↑ sFID↓ Pre.↑ Rec.↑ ACC1 ACC5

w/o Bernoulli denoising
Direct BCE 5.84 212.34 9.89 0.78 0.52 63.3 84.8

w/ Bernoulli denoising
Predict z0 4.39 274.26 9.07 0.87 0.44 62.0 83.9
Predict zt ⊕ z0 (Ours) 3.17 262.14 5.59 0.86 0.50 64.3 85.4

Table 3: Sampling order comparison. We in-
clude the autoregressive variant for reference.

Type Order Time↓ FID↓ IS↑ sFID↓ Pre.↑ Rec.↑
AR Raster 1.04 7.50 164.31 6.56 0.85 0.41
Mask Raster 8.81 4.51 191.10 6.49 0.80 0.54
Mask Rand. 0.69 7.12 174.11 11.85 0.76 0.55
Mask Ours 0.69 3.17 262.14 5.59 0.86 0.50

Observation As shown in Tab. 1, our model significantly outperforms other methods across all
main evaluation metrics. In addition, we have the following observations. (1) By comparing Lla-
maGen and S0, using binary autoencoder provides better generative performance and worse dis-
criminative performance compared to VQGAN. (2) For generation, AR modeling is better suited for
categorical loss, while masked modeling is more appropriate for binary loss. (3) For discrimination,
masked modeling drastically outperforms AR modeling for both losses, with binary loss further en-
hancing performance. (4) Masked modeling achieves significantly faster inference speed compared
to AR modeling due to its fewer sampling iterations, with the binary objective taking more time re-
sulting from the diffusion process. To conclude, BiGR, which employs masked modeling on binary
latent codes, achieves the best uniform performance on both generative and discriminative tasks,
accompanied by an efficient inference runtime.

4.3 MODEL ANALYSIS

We analyze each component of our proposed method below. All experiments are conducted on
BiGR-L-d16 unless otherwise specified.

Binary transcoder We apply Bernoulli denoising process (Wang et al., 2023) as our binary
transcoder to generate probabilities of Bernoulli distributions, from which the binary codes are
sampled. We experiment with two variants, namely (1) predicting the initial clean latent z0, and
(2) predicting the element-wise exclusive OR (XOR) value between the latent at the t-th timestep
zt and z0. We find empirically the latter performs better, and thus, we adopt this setting for all
of our models. Alternatively, a naı̈ve approach involves using a direct binary cross-entropy (BCE)
loss to train the model, replacing the Bernoulli denoising process. We compare these three variants
in Tab. 2. Our method outperforms the other two variants across all main metrics. We observe that
using direct BCE generates very smooth images which harms the generative performance. XOR
prediction yields better generative and discriminative performance compared to z0 prediction.

Sampling strategy In this paper, we propose a simple entropy-ordered sampling strategy tailored
for the masked training paradigm. We compare our method with two alternative sampling orders,
namely (1) a raster-scan order similar to the autoregressive approach, and (2) a random order. Like
our strategy, both compared methods are applied to the same trained model. The comparison results
of the generative evaluation are reported in Tab. 3. The results indicate that the proposed sampling
strategy is the best fit for our model’s generative purposes.

Inference hyperparameters We evaluate the impact of two hyperparameters specific to our model
on its performance. (1) We first present the FID results and sample time for different numbers of
sampling iterations N on the left side of Fig. 3. We observe that larger models generally achieve
lower FID values, although they also increase sample time. In addition, more sampling iterations
do not guarantee better performance, as different-sized models have varying optimal sampling iter-
ations. For example, the L-sized model achieves its best performance with 20 iterations, rather than
with larger numbers. (2) On the right side of Fig. 3, we present the results for different numbers
of diffusion timesteps T . The results indicate that diffusion timesteps have a marginal impact on
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Figure 3: Relationships between FID-50K and sample time across varying inference hyper-
parameters. We compare different numbers of sampling iterations (N ) on the left and varying
diffusion timesteps (T ) on the right for three model sizes.
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We include the reconstruction FID (rFID) for each binary tokenizer for reference (grey points).

generative performance, suggesting that our model can achieve comparable generation quality with
fewer diffusion timesteps. This can significantly accelerate generation speed, especially for larger
models. For example, with 10 diffusion timesteps, the XXL-sized model can achieve a FID of 2.73
at a speed of 0.85s per image.

Model size and code dimension We validate that our model is scalable by testing the performance
of different-sized models using tokenizers with various code dimensions. Note that the dimension
of the binary codes only alters the number of parameters in the input and output linear projections,
resulting in minimal effects on the overall model size. The evaluation results of both generative and
discriminative performance are shown in Fig. 4. Our model generally performs better with larger
sizes across all code dimensions, as indicated by both generative and discriminative metrics.

Besides, we have the following observations from Fig. 4. (1) When the model size is small, it be-
comes challenging to model large-dimensional codes, such as a dimension of 32 for the L-sized
model, especially for generative purpose. (2) In contrast, as the model size increases, the improve-
ment for smaller-dimensional codes is relatively modest, indicating that these codes are easier to
model and can be effectively handled by smaller-sized models. (3) An exception arises in the linear-
probe evaluation of models with 32-dimensional codes, where our XL-sized model outperforms the
XXL-sized model. We hypothesize that this may be due to the optimal transformer layer for fea-
ture representation identified in the 16-dimensional model, which might not be the best choice for
32-dimensional models of the XXL size.

Unconditional training Our model is a class-conditional generative model. Intuitively, condi-
tional generative training adds condition guidance that is absent in downstream discriminative tasks,
which can diminish the representation capabilities of the model. We validate this conjecture by
comparing the linear-probe performance of our model with that of its unconditional counterpart. We
train the unconditional model by replacing the class conditional tokens with a single unconditional
token, and keep the inference process unchanged. We evaluate BiGR-L-d20 alongside its uncon-
ditional counterpart, and report the results in Tab. 4. The unconditional counterpart demonstrates
better representation capabilities than our conditional model, indicating that discriminative tasks are
more challenging for conditional generative models.

Resolution of 512×512 Using a binary autoencoder that projects a 512×512 image into 32×32
binary latent codes, we enable our model to generate 512×512 images by increasing the input se-
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Figure 5: Generated 512×512 samples.

Table 4: Linear-probe evaluation of condi-
tional and unconditional counterparts.

Training ACC1 ACC5

Cond. 67.5 87.5
Uncond. 68.3 88.4

Table 5: Generative performance comparison
on 256×256 ImageNet-1K benchmark.

Type Model #Params. FID↓ IS↑

Diff. DiT-L/2 (Peebles & Xie, 2023) 458M 5.02 167.2
DiT-XL/2 675M 2.27 278.2

Mask MaskGIT (Chang et al., 2022) 227M 6.18 182.1

AR

VQGAN (Esser et al., 2021) 227M 18.65 80.4
VQGAN 1.4B 15.78 74.3
ViT-VQGAN (Yu et al., 2022a) 1.7B 4.17 175.1
RQTran. (Lee et al., 2022) 3.8B 7.55 134.0

VAR

VAR-d16 (Tian et al., 2024) 310M 3.30 274.4
VAR-d20 600M 2.57 302.6
VAR-d24 1.0B 2.09 312.9
VAR-d30 2.0B 1.92 323.1

MAR
MAR-B (Li et al., 2024) 208M 2.31 281.7
MAR-L 479M 1.78 296.0
MAR-H 943M 1.55 303.7

AR

LlamaGen-B (Sun et al., 2024) 111M 5.46 193.6
LlamaGen-L 343M 3.81 248.3
LlamaGen-XL 775M 3.39 227.1
LlamaGen-XXL 1.4B 3.09 253.6
LlamaGen-3B 3.1B 3.05 222.3

Ours
BiGR-L-d24 336M 2.71 275.7
BiGR-XL-d24 799M 2.49 278.8
BiGR-XXL-d32 1.5B 2.36 277.2

Table 6: Linear-probe top-1 accuracy on
ImageNet-1K. †: our evaluation results.

Type Method #Tokens Params ACC1↑

Con.

MoCo (He et al., 2020) - 375M 68.6
SimCLR (Chen et al., 2020b) - 375M 76.5
SwAV (Caron et al., 2020) - 93M 75.3
DINO (Caron et al., 2021) - 85M 75.3
BYOL (Grill et al., 2020) - 375M 78.6
CAE (Chen et al., 2024b) - 304M 78.1
CMAE (Huang et al., 2023) - 86M 73.9

MIM

iBOT (Zhou et al., 2022) - 304M 81.0
BEiT (Bao et al., 2022) 16×16 307M 73.5
MAE (He et al., 2022) 14×14 304M 75.8
MAGE (Li et al., 2023a) 16×16 328M 78.9

Gen.

BigBiGAN (Brock, 2018) - 344M 61.3
iGPT-L (Chen et al., 2020a) 32×32 1.4B 60.3
iGPT-L 48×48 1.4B 65.2
ViT-VQGAN-B (Yu et al., 2022a) 32×32 650M 65.1
ViT-VQGAN-L 32×32 1.7B 73.2
RCG (Li et al., 2023b) 16×16 304M 77.6
l-DAE (Chen et al., 2024c) - 304M 75.0

Cond.
gen.

LlamaGen-L† (Sun et al., 2024) 16×16 343M 40.5
MAR-B† (Li et al., 2024) 16×16 208M 57.9
MAR-L† 16×16 479M 59.1
MAR-H† 16×16 943M 60.0
BiGR-L-d20 (Ours) 16×16 336M 67.5
BiGR-XL-d32 (Ours) 16×16 799M 69.8

quence length to 1024. We train such a binary autoencoder with a code dimension of 32 and train
our model to accommodate this sequence length. We showcase the generated samples in Fig. 5, with
additional samples available in Appendix C.

4.4 SYSTEM-LEVEL COMPARISONS

We re-emphasize that the goal of this work is to propose a uniform conditional generative model that
can produce high-quality generations while maintaining strong representation capabilities. There-
fore, surpassing state-of-the-art models across all metrics is not within the scope of this research.
We provide a more comprehensive comparison in Appendix B.

Conditional image generation We present a comparison of the generative performance of our
model with leading generative systems in Tab. 5. Our model maintains top-tier generative quality
among the first echelon of approaches. Besides, BiGR significantly outperforms LlamaGen.

Visual representation We compare the linear-probe results of our model and the previous meth-
ods specifically designed for discriminative tasks. The results are shown in Tab. 6. We categorize
the compared models into several types: contrastive (Con.), masked image modeling (MIM), gen-
erative (Gen.), and conditional generative (Cond. gen.). This classification is not entirely precise,
as some models may use multiple losses for training, like MAGE (Li et al., 2023a). Our model
is fairly compared to the conditional generative models, which solely rely on plain reconstruction
loss without discriminative designs, such as specialized losses, augmentations, or additional data.
For LlamaGen (Sun et al., 2024) that has the same model architecture as ours, we use the feature
from the same layer for linear layer training. For MAR (Li et al., 2024), since their structure largely
resembles MAE (He et al., 2022), we follow MAE’s approach and train the linear layer on top of the
encoder outputs. BiGR significantly outperforms the other conditional generative models.

4.5 ZERO-SHOT GENERALIZED APPLICATIONS

The nature of the masked modeling mechanism allows the use of BiGR in a wide range of appli-
cations in a zero-shot manner, without the need for task-specific structural changes or parameter
fine-tuning. We present the results of BiGR applied across various tasks in Fig. 6.
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Inpainting Outpainting Editing Interpolation Enrichment

Figure 6: Zero-shot generalization. We present samples of inpainting, outpainting, editing, in-
terpolation, and enrichment. The original image is marked with a purple border, with a pink box
highlighting the masked region. Images without the purple borders are generated by our model.

Inpainting & Outpainting Given an image with a mask, we use the unmasked regions to initialize
the model inputs, enabling it to generate the remaining masked tokens. This generation process
is guided by an unconditional token, which ensures that no additional information is introduced,
allowing the model to focus solely on the existing image information. This approach enables high-
quality and diverse inpainting and outpainting.

Class-conditional editing Unlike inpainting and outpainting, class-conditional editing is guided
by a specific class condition, allowing the model to edit the masked region with a designated class
object. Other operations remain consistent with inpainting and outpainting.

Class interpolation We interpolate between two class conditions by calculating a weighted sum
in the embedding space. We then use the resulting interpolated embedding to guide the generation
process. This interpolation process demonstrates that our model can generalize visual characteristics
across different classes rather than merely memorizing each class.

Image enrichment Our model can also enrich visual details in a low-resolution image, a process
we call image enrichment. Specifically, we first upsample a 128×128 image to a resolution of
256×256 and encode it into a sequence of 16×16 tokens. This approach leverages the model’s
generative capabilities to enrich images from low-resolution inputs.

5 CONCLUSION

We introduce BiGR as the first conditional generative model that unifies generative and discrimina-
tive tasks within the same framework. Through extensive experiments, we highlight its uniformity,
efficiency, flexibility, and scalability. Our results demonstrate that BiGR achieves decent perfor-
mance in both generation quality and linear separability. Additionally, we showcase its application
in various zero-shot generalized tasks. We believe BiGR has the potential to be adapted for a broader
range of applications in the future.

Limitations (1) Our sampling strategy involves numerous hyperparameters to tune, resulting in
a substantial search space; thus, the reported models may not represent the optimal settings. (2)
The model’s sequence length is fixed during training, making it inflexible to accommodate inputs of
varying lengths. Consequently, generating higher-resolution images requires re-training the model.
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A ADDITIONAL IMPLEMENTATION DETAILS

Model configuration The configuration settings for the model architecture, training and inference
of BiGR across different model sizes are provided in Tab. 7. Unless otherwise specified, our model
uses this default setting in the main paper.

Table 7: The default configuration settings of three models: BiGR-L, BiGR-XL, BiGR-XXL.

BiGR-L

Config Value

Architecture

Transformer layers 24
Transformer heads 16

Transformer dimensions 1024
MLP layers 3

MLP dimensions 1024

Training

Batch size 1024
Epochs 400

Weight decay 2e-2
Learning rate 1e-4

Total diffusion timesteps 256

Inference

CFG scale 2.5
Sampling iterations 20
Gumbel temperature 0.17
Diffusion timesteps 100

BiGR-XL

Config Value

Architecture

Transformer layers 36
Transformer heads 20

Transformer dimensions 1280
MLP layers 6

MLP dimensions 1280

Training

Batch size 512
Epochs 400

Weight decay 2e-2
Learning rate 1e-4

Total diffusion timesteps 256

Inference

CFG scale 2.5
Sampling iterations 25
Gumbel temperature 0.25
Diffusion timesteps 100

BiGR-XXL

Config Value

Architecture

Transformer layers 48
Transformer heads 24

Transformer dimensions 1536
MLP layers 8

MLP dimensions 1536

Training

Batch size 512
Epochs 400

Weight decay 2e-2
Learning rate 1e-4

Total diffusion timesteps 256

Inference

CFG scale 2.5
Sampling iterations 25
Gumbel temperature 0.30
Diffusion timesteps 100

Binary transcoder After producing Bernoulli distribution probabilities through Bernoulli denois-
ing, there are two ways to obtain binary codes: deterministic and non-deterministic. For deter-
ministic method, values are set to 1 if the probability exceeds 0.5, and 0 otherwise. In contrast,
for non-deterministic methods, we sample directly from the Bernoulli distribution to obtain 0 and
1 values. We empirically compare these two methods, as shown in Tab. 8 and find that the non-
deterministic approach slightly outperforms its deterministic counterpart. As a result, we adopt the
non-deterministic approach for all models presented in the main paper.

Table 8: Comparison of deterministic and non-deterministic sampling.

Determ. FID↓ IS↑ sFID↓ Pre.↑ Rec.↑
✓ 3.19 239.79 6.25 0.84 0.52
✗ (Ours) 3.17 262.14 5.59 0.86 0.50

Sampling strategy In our sampling strategy, the implementation of Eq. (8) in the main paper may
encounter a ”nan” issue caused by the logarithmic operation. Since we only need to compare the
relative magnitudes of different entries, we can instead use a value with the same trend to mimic the
exact confidence. We use 2× |pk − 0.5| as the final confidence value in our implementation.

Adaptive LayerNorm We empirically find that adaptive LayerNorm (adaLN) has a marginal ef-
fect on performance. Following the approach in Tian et al. (2024), we implement a shared adaLN
that uses a single MLP to obtain the shift, scale, and gate values for all transformer layers, which
adds only a minimal number of parameters.

Linear probe Following the linear-probe evaluation protocol outlined in (He et al., 2022), we use
the LARS optimizer with a momentum of 0.9. We train the linear head for 100 epochs, using a batch
size of 256 along with 8 gradient accumulation steps. We use a warm-up period of 10 epochs and
set the learning rate to 0.1. An extra BatchNorm layer is added before the linear classifier, without
affine transformation. We refrain from using mixup, cutmix, drop path, or color jittering, and the
weight decay is set to zero. We use the same linear-probe setting for all compared models in the
main paper.
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Table 9: Model comparison of generative performance on ImageNet-1K. Metrics include Frechet
inception distance (FID), inception score (IS), precision (Pre.) and recall (Rec.). All models are
tested on 256×256 ImageNet-1K benchmark. The suffix ”-re” denotes the use of rejection sampling.

Type Model #Params. FID↓ IS↑ Pre.↑ Rec.↑

GAN
BigGAN (Brock, 2018) 112M 6.95 224.5 0.89 0.38
GigaGAN (Kang et al., 2023) 569M 3.45 225.5 0.84 0.61
StyleGanXL (Sauer et al., 2022) 166M 2.30 265.1 0.78 0.53

Diffusion
LDM-4 (Rombach et al., 2022) 400M 3.60 247.7 - -
DiT-L/2 (Peebles & Xie, 2023) 458M 5.02 167.2 0.75 0.57
DiT-XL/2 675M 2.27 278.2 0.83 0.57

Mask. MaskGIT (Chang et al., 2022) 227M 6.18 182.1 0.8 0.51
MaskGIT-re 227M 4.02 355.6 - -

AR

VQGAN (Esser et al., 2021) 227M 18.65 80.4 0.78 0.26
VQGAN 1.4B 15.78 74.3 - -
VQGAN-re 1.4B 5.20 280.3 - -
ViT-VQGAN (Yu et al., 2022a) 1.7B 4.17 175.1 - -
ViT-VQGAN-re 1.7B 3.04 227.4 - -
RQTran. (Lee et al., 2022) 3.8B 7.55 134.0 - -
RQTran.-re 3.8B 3.80 323.7 - -

VAR

VAR-d16 (Tian et al., 2024) 310M 3.30 274.4 0.84 0.51
VAR-d20 600M 2.57 302.6 0.83 0.56
VAR-d24 1.0B 2.09 312.9 0.82 0.59
VAR-d30 2.0B 1.92 323.1 0.82 0.59

MAR
MAR-B (Li et al., 2024) 208M 2.31 281.7 0.82 0.57
MAR-L 479M 1.78 296.0 0.81 0.60
MAR-H 943M 1.55 303.7 0.81 0.62

AR

LlamaGen-B (Sun et al., 2024) 111M 5.46 193.6 0.83 0.45
LlamaGen-L 343M 3.81 248.3 0.83 0.52
LlamaGen-XL 775M 3.39 227.1 0.81 0.54
LlamaGen-XXL 1.4B 3.09 253.6 0.83 0.53
LlamaGen-3B 3.1B 3.05 222.3 0.80 0.58

Ours
BiGR-L-d24 336M 2.71 275.7 0.84 0.53
BiGR-XL-d24 799M 2.49 278.8 0.84 0.55
BiGR-XXL-d24 1.5B 2.36 277.2 0.83 0.55

B ADDITIONAL SYSTEM-LEVEL COMPARISON

We provide a more comprehensive comparison of different leading models. We compare generative
performance in Tab. 9 and discriminative performance in Tab. 10.

C ADDITIONAL GENERATED SAMPLES

We provide additional 512×512 samples and 256×256 samples generated by our model in Fig. 7.
We also include uncurated generated samples from various classes in Fig. 8 to 19.

D ETHICS STATEMENT

We recognize the ethical risks of image generation, such as potential misuse for harmful content.
Our research aims to promote positive uses like creativity and education, with a commitment to
responsible application. Safeguards and continuous ethical oversight are strongly encouraged.

15



Preprint.

Table 10: Linear-probe top-1 accuracy on ImageNet-1K. MIM denotes masked image modeling.
†: our evaluation results.

Method #Tokens Params ACC1↑

C
on

tr
as

tiv
e

m
et

ho
ds CPC v2 (Henaff, 2020) - 303M 71.5

MoCo (He et al., 2020) - 375M 68.6
SimCLR (Chen et al., 2020b) - 375M 76.5
SwAV (Caron et al., 2020) - 93M 75.3
DINO (Caron et al., 2021) - 85M 75.3
BYOL (Grill et al., 2020) - 375M 78.6
CAE (Chen et al., 2024b) - 304M 78.1
CMAE (Huang et al., 2023) - 86M 73.9

M
IM

iBOT (Zhou et al., 2022) - 304M 81.0
BEiT (Bao et al., 2022) 16×16 307M 73.5
MAE (He et al., 2022) 14×14 304M 75.8
MAGE (Li et al., 2023a) 16×16 328M 78.9

G
en

er
at

iv
e

m
et

ho
ds

BiGAN Donahue et al. (2017) - 138M 31.0
BigBiGAN (Donahue & Simonyan, 2019) - 86M 56.6
BigBiGAN - 344M 61.3
iGPT-L (Chen et al., 2020a) 32×32 1.4B 60.3
iGPT-L 48×48 1.4B 65.2
ViT-VQGAN-B (Yu et al., 2022a) 32×32 650M 65.1
ViT-VQGAN-L 32×32 1.7B 73.2
RCG (Li et al., 2023b) 16×16 304M 77.6
l-DAE (Chen et al., 2024c) - 304M 75.0

C
on

d.
ge

n.

LlamaGen-L† (Sun et al., 2024) 16×16 343M 40.5
MAR-B† (Li et al., 2024) 16×16 208M 57.9
MAR-L† 16×16 479M 59.1
MAR-H† 16×16 943M 60.0
BiGR-L-d20 (Ours) 16×16 336M 67.5
BiGR-XL-d32 (Ours) 16×16 799M 69.8

16



Preprint.

Figure 7: Additional generated 256×256 and 512×512 samples.
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Figure 8: Uncurated 256×256 samples.
Model: BiGR-XXL-d32
Class label = “Jay” (17)

Figure 9: Uncurated 256×256 samples.
Model: BiGR-XXL-d32
Class label = “Loggerhead, loggerhead turtle,
Caretta caretta” (33)

18



Preprint.

Figure 10: Uncurated 256×256 samples.
Model: BiGR-XXL-d32
Class label = “Common iguana, Iguana, Igua-
na iguana” (39)

Figure 11: Uncurated 256×256 samples.
Model: BiGR-XXL-d32
Class label = “Macaw” (88)
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Figure 12: Uncurated 256×256 samples.
Model: BiGR-XXL-d32
Class label = “Golden retriever” (207)

Figure 13: Uncurated 256×256 samples.
Model: BiGR-XXL-d32
Class label = “Siberian husky” (250)

20



Preprint.

Figure 14: Uncurated 256×256 samples.
Model: BiGR-XXL-d32
Class label = “Otter” (360)

Figure 15: Uncurated 256×256 samples.
Model: BiGR-XXL-d32
Class label = “Madagascar cat, ring-tailed lemur,
Lemur catta” (383)
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Figure 16: Uncurated 256×256 samples.
Model: BiGR-XXL-d32
Class label = “Altar” (406)

Figure 17: Uncurated 256×256 samples.
Model: BiGR-XXL-d32
Class label = “Space Shuttle” (812)

22



Preprint.

Figure 18: Uncurated 256×256 samples.
Model: BiGR-XXL-d32
Class label = “Alp” (970)

Figure 19: Uncurated 256×256 samples.
Model: BiGR-XXL-d32
Class label = “Volcano” (980)
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